Prosestranskripsi, merupakan proses pencetakan atau penulisan ulang DNA ke dalam mRNA (kodon). Proses ini terjadi di dalam nukleus. Pada tahap ini, setiap basa nitrogen DNA dikodekan ke dalam basa nitrogen RNA. Misalnya, jika urutan basa nitrogen DNA adalah ACT TAC CAA, maka urutan mRNA hasil transkripsi adalah UGA AUG GTU.
Salah satu hasil transkripsi DNA adalah RNA struktural yaitu …. a. mRNA b. tRNA c. rRNA d. miRNA e. iRNA Jawaban pilihan jawaban yang benar adalah A. Pembahasan Transkripsi merupakan tahap pertama dari proses sintesis protein yang nantinya dilanjutkan dengan tahap kedua yaitu translasi. Proses transkripsi membutuhkan bantuan dari enzim yang disebut RNA polimerase. Enzim ini berfungsi untuk membuka rantai ganda DNA dan membentuk rantai RNA dari cetakan template DNA yang ingin diterjemahkan. DNA yang ditranskripsi disebut DNA sense/kodogen. Hasil transkripsi berupa mRNA kodon. Dengan demikian, pilihan jawaban yang benar adalah A.
DNAberfungsi sebagai pembawa informasi genetik, yakni sifat-sifat yang harus di wariskan kepada keturunannya. 7. RNA asam ribonukleat (ribonucleic acid, disingkat RNA) merupakan persenyawaan hasil transkripsi DNA. jadi bagian tertentu DNA melakukan transkripsi (mengkopi dir) membentuk .RNA.
– Dalam mempelajari genetika, ada yang disebut sebagai promoter. Promoter adalah segmen DNA yang berfungsi sebagai tempat awal RNA polimerasi berikatan untuk proses transkripsi. Berikut adalah penjelasan tentang promoter! Pengertian promoter Promoter adalah bagian atau segmen DNA yang berada tepat sebelum gen yang akan ditranskripsi. Artinya, secara sederhana promoter adalah suatu wilayah yang menandai awal dari dari Biology LibreTexts, wilayah promoter bisa pendek hanya terdiri dari beberapa nukleotida atau cukup panjang terdiri dari ratusan nukleotida. Promoter menjadi awal, membuat kita dapat membedakan satu gen dengan gen lainnya dalam rantai panang gen yang menyusun DNA. Baca juga Struktur dan Fungsi Kromosom Sentromer, Lokus Gen Sampai Telomer Fungsi promoter Promoter berperan penting dalam transkripsi atau proses penyalinan DNA untuk membuat cetak biru pembuatan protein. Berikut adalah fungsi promoter dalam proses transkripsi DNA!Menentukan arah transkripsi Promoter bagaikan kepala yang menandai awal dari gen. Seperti yang kita ketahui, gen terbentuk dari urutan basa-basa nukleotida tertentu. Perbedaan urutan basa tersebut akan menyebabkan kesalahan dalam pembuatan protein. Promoter menunjukkan arah transkripsi, dari hulu gen ke bagian hilir. Sehingga, proses transkripsi gen tidak akan terjadi terbalik dan tidak akan menyebabkan kesalahan. Tempat melekatnya RNA polimerase Dilansir dari National Human Genome Research Institute, promoter memiliki fungsi pengikatan untuk enzim yang digunakan untuk membuat molekul messenger RNA mRNA. Baca juga RNA Pengertian, Struktur, dan Fungsi Enzim tersebut adalah RNA polimerasi yang bertugas untuk menyalin urutan basa nukleotida DNA menjadi mRNA. mRNA dibuat sebagai penyampai pesan hasil transkripsi, karena DNA tidak bisa keluar dari inti sel. Tempat dimulainya transkripsi DNA Dilansir dari Khan Academy, promoter berisi urutan DNA yang memungkinkan RNA polimerasi atau protein pembantunya faktor transkripsi basal menempel pada DNA.
Prosestranskripsi membutuhkan bantuan dari enzim yang disebut RNA polimerase. Enzim ini berfungsi untuk membuka rantai ganda DNA dan membentuk rantai RNA dari cetakan (template) DNA yang ingin diterjemahkan. DNA yang ditranskripsi disebut DNA sense/kodogen. Hasil transkripsi berupa mRNA (kodon). Dengan demikian, pilihan jawaban yang benar adalah A.
Dalam genetika, transkripsi bahasa Inggris transcription adalah pembuatan RNA terutama mRNA dengan menyalin sebagian berkas Deoxyribonucleic acid oleh enzim RNA polimerase.[i] Proses transkripsi menghasilkan mRNA dari Deoxyribonucleic acid di dalam sel yang menjadi langkah awal sintesis protein.[2] Transkripsi merupakan bagian dari rangkaian ekspresi genetik. Pengertian asli “transkripsi” adalah alih aksara atau penyalinan. Di sini, yang dimaksud adalah mengubah “teks” DNA menjadi RNA. Sebenarnya, yang berubah hanyalah basa nitrogen timina di Dna yang pada RNA digantikan oleh urasil. Proses [sunting sunting sumber] Diagram sederhana dari proses sintesis mRNA. Enzim tidak ditampilkan. Transkripsi berlangsung di dalam inti sel atau di dalam matriks mitokondria dan plastida. Transkripsi dapat dipicu oleh rangsangan dari luar maupun tanpa rangsangan. Pada proses tanpa rangsangan, transkripsi berlangsung terus-menerus gen-gennya disebut gen konstitutif atau “gen pengurus rumah”, house-keeping genes. Sementara itu, gen yang memerlukan rangsangan biasanya gen yang hanya diproduksi sewaktu-waktu; gennya disebut gen regulatorik karena biasanya mengatur mekanisme khusus. Rangsangan akan mengaktifkan bagian promoter inti,[3] segmen gen yang berfungsi sebagai pencerap RNA polimerase[4] yang terletak di bagian hulu bagian yang akan disalin disebut transcription unit, tidak jauh dari ujung 5′ gen.[4] Promoter inti terdiri dari kotak TATA, kotak CCAAT dan kotak GC.[5] Sebelum RNA polimerase dapat terikat pada promoter inti, faktor transkripsi TFIID akan membentuk kompleks dengan kotak TATA.[half dozen] Inhibitor dapat mengikat pada kompleks TFIID-TATA dan mencegah terjadinya kompleks dengan faktor transkripsi lain, namun hal ini dapat dicegah dengan TFIIA yang membentuk kompleks DA-TATA. Setelah itu TFIIB dan TFIIF akan turut terikat membentuk kompleks DABF-TATA. Setelah itu RNA polimerase akan mengikat pada DABF-TATA, dan disusul dengan TFIIE, TFIIH dan TFIIJ. Kompleks tersebut terjadi pada bagian kotak TATA yang terletak sekitar 10-25 pasangan basa di bagian hulu upstream dari kodon mulai AUG. Adanya faktor transkripsi ini akan menarik enzim RNA polimerase mendekat ke Dna dan kemudian menempatkan diri pada tempat yang sesuai dengan kodon mulai TAC pada berkas DNA. Berkas DNA yang ditempel oleh RNA polimerase disebut sebagai berkas templat, sementara berkas pasangannya disebut sebagai berkas kode karena memiliki urutan basa yang sama dengan RNA yang dibuat. Pada awal transkripsi, enzim guaniltransferase menambahkan gugus m7Gppp pada ujung 5′ untai pre-mRNA.[7] Sejumlah ATP diperlukan untuk membuat RNA polimerase mulai bergerak dari ujung iii’ ujung karboksil berkas templat ke arah ujung five’ ujung amino. pre-mRNA yang terbentuk dengan demikian berarah 5′ → 3′. Pergerakan RNA polimerase akan berhenti apabila ia menemui urutan basa yang sesuai dengan kodon berhenti, dan deret AAUAAA akan ditambahkan pada pangkal 3′ pre-mRNA.[seven] Setelah proses selesai, RNA polimerase akan lepas dari DNA, sedangkan pre-mRNA akan teriris sekitar twenty bp dari deret AAUAAA dan sebuah enzim, poliA polimerase akan menambahkan deret antara 150 – 200 adenosina untuk membentuk pre-mRNA yang lengkap yang disebut mRNA primer.[7] Tergantung intensitasnya, dalam satu berkas transcription unit of measurement sejumlah RNA polimerase dapat bekerja secara simultan. Intensitas transkripsi ditentukan oleh keadaan di sejumlah bagian tertentu pada DNA. Ada bagian yang disebut suppressor yang menekan intensitas, dan ada yang disebut enhancer yang memperkuatnya. Hasil [sunting sunting sumber] Hasil transkripsi yaitu berkas RNA yang masih “mentah” yang disebut mRNA primer.[8] Di dalamnya terdapat fragmen berkas untuk poly peptide yang mengatur dan membantu sintesis protein translasi selain fragmen untuk dilanjutkan dalam translasi sendiri, ditambah dengan bagian yang nantinya akan dipotong intron. Berkas RNA ini selanjutnya akan mengalami proses yang disebut sebagai proses pascatranskripsi post-transcriptional procedure. Langkah utama [sunting sunting sumber] Transkripsi dibagi menjadi inisiasi, pelepasan promotor, perpanjangan, dan penghentian.[nine] Inisiasi [sunting sunting sumber] Transkripsi dimulai dengan pengikatan RNA polimerase, bersama dengan satu atau lebih faktor transkripsi umum, ke urutan DNA spesifik yang disebut sebagai “promotor” untuk membentuk “kompleks tertutup” RNA polimerase-promotor. Dalam “kompleks tertutup”, DNA promotor masih sepenuhnya beruntai ganda.[10] Perpanjangan elongasi [sunting sunting sumber] Satu untai Deoxyribonucleic acid, untai cetakan atau untai non-penyandi, digunakan sebagai cetakan untuk sintesis RNA. Saat transkripsi berlangsung, RNA polimerase melintasi untai cetakan dan menggunakan komplementaritas pasangan basa dengan cetakan DNA membentuk salinan RNA yang memanjang selama traversal. Meskipun RNA polimerase melintasi untai cetakan dari iii’ → 5′, untai pengkode non-templat dan RNA yang baru terbentuk juga dapat digunakan sebagai titik referensi, sehingga transkripsi dapat digambarkan terjadi five’ → iii’. Ini menghasilkan molekul RNA dari v’ → 3′, salinan persis dari untai pengkode kecuali timin diganti dengan urasil, dan nukleotida terdiri dari gula ribosa v-karbon.[11] [12] Diagram sederhana dari perpanjangan transkripsi. Penghentian terminasi [sunting sunting sumber] Bakteri menggunakan dua strategi berbeda untuk terminasi transkripsi – terminasi tidak tergantung Rho dan terminasi tergantung Rho. Dalam penghentian tidak tergantung Rho, transkripsi RNA berhenti ketika molekul RNA yang baru disintesis membentuk loop jepit rambut kaya Thousand-C diikuti dengan lepasnya U. Ketika jepit rambut terbentuk, tekanan mekanis memutuskan ikatan rU-dA yang lemah, mengisi hibrid DNA-RNA. Hal ini menarik transkrip poli-U keluar dari situs aktif RNA polimerase, dan mengakhiri transkripsi. Dalam terminasi tergantung Rho, faktor protein yang disebut “Rho” mengacaukan interaksi antara cetakan dan mRNA, sehingga melepaskan mRNA yang baru disintesis dari kompleks elongasi.[xiii] Terminasi transkripsi pada eukariot kurang dipahami dengan baik dibandingkan pada bakteri, tetapi melibatkan pembelahan transkrip baru diikuti dengan penambahan adenin tidak tergantung cetakan pada ujung iii’ yang baru, dalam proses yang disebut poliadenilasi. Transkripsi terbalik [sunting sunting sumber] Skema dari transkripsi terbalik. Beberapa virus seperti HIV, penyebab AIDS, memiliki kemampuan untuk mentranskripsi RNA menjadi Dna. HIV memiliki genom RNA yang ditranskripsi terbalik menjadi Dna. Dna yang dihasilkan dapat digabungkan dengan genom DNA sel inang. Enzim utama yang bertanggung jawab untuk sintesis DNA dari cetakan RNA disebut reverse transkriptase. Dalam kasus HIV, opposite transkriptase bertanggung jawab untuk mensintesis untai DNA komplementer cDNA pada genom RNA virus. Enzim ribonuklease H kemudian memotong untai RNA, dan reverse transkriptase mensintesis untai komplementer Dna untuk membentuk struktur Dna heliks ganda “cDNA”. cDNA diintegrasikan ke dalam genom sel inang oleh enzim integrase, yang menyebabkan sel inang menghasilkan protein virus yang berkumpul kembali menjadi partikel virus baru. Kemudian, sel inang yaitu limfosit T mengalami kematian sel terprogram apoptosis.[14] Namun, pada retrovirus lain, sel inang tetap utuh saat virus keluar dari sel. Beberapa sel eukariotik mengandung enzim dengan aktivitas transkripsi terbalik yang disebut telomerase. Telomerase adalah reverse transkriptase yang memperpanjang ujung kromosom linier. Telomerase membawa cetakan RNA dari mana ia mensintesis urutan berulang Deoxyribonucleic acid, atau Dna “sampah”. Urutan Deoxyribonucleic acid yang berulang ini disebut telomer dan dapat dianggap sebagai “tutup” untuk kromosom. Ini penting karena setiap kali kromosom linier digandakan, itu dipersingkat. Dengan Dna “junk” atau “tutup” di ujung kromosom, pemendekan menghilangkan beberapa urutan berulang yang tidak esensial daripada urutan DNA penyandi protein, yang lebih jauh dari ujung kromosom. Telomerase sering diaktifkan dalam sel kanker untuk memungkinkan sel kanker menduplikasi genom mereka tanpa kehilangan urutan Deoxyribonucleic acid pengkode poly peptide yang penting. Aktivasi telomerase bisa menjadi bagian dari proses yang memungkinkan sel kanker menjadi abadi. Faktor keabadian kanker melalui pemanjangan telomer karena telomerase telah terbukti terjadi pada 90% dari semua tumor karsinogenik in vivo dengan x% sisanya menggunakan rute pemeliharaan telomer alternatif yang disebut pemanjangan alternatif telomer culling lengthening of telomeres, ALT.[15] Inhibitor [sunting sunting sumber] Inhibitor transkripsi dapat digunakan sebagai antibiotik terhadap patogen, misal bakteri antibakteri dan jamur antijamur. Contoh antibakteri tersebut adalah rifampisin, yang menghambat transkripsi Dna bakteri dengan menghambat RNA polimerase tergantung DNA dengan mengikat subunit beta-nya, sedangkan eight-hidroksikuinolin adalah penghambat transkripsi antijamur.[sixteen] [17] Efek metilasi histon juga dapat bekerja untuk menghambat transkripsi. Produk alami bioaktif yang kuat seperti triptolide yang menghambat transkripsi mamalia melalui penghambatan subunit XPB dari faktor transkripsi umum TFIIH baru-baru ini dilaporkan sebagai konjugat glukosa untuk menargetkan sel kanker hipoksia dengan peningkatan ekspresi transporter glukosa.[18] Inhibitor endogen [sunting sunting sumber] Pada vertebrata, sebagian besar promotor gen mengandung pulau CpG dengan banyak situs CpG.[xix] Ketika banyak situs CpG promotor gen termetilasi, gen menjadi terhambat dibungkam.[20] Kanker kolorektal biasanya memiliki three hingga 6 mutasi pengemudi dan 33 hingga 66 mutasi genetik hitchhiking atau penumpang.[21] Namun, penghambatan transkripsi pembungkaman mungkin lebih penting dalam menyebabkan perkembangan menjadi kanker dibandingkan kejadian mutasi. Misalnya pada kanker kolorektal, sekitar 600 hingga 800 gen dihambat secara transkripsi oleh metilasi pulau CpG.[22] [23] Penekanan transkripsional pada kanker juga dapat terjadi melalui mekanisme epigenetik lainnya, seperti perubahan ekspresi microRNA.[24] Pada kanker payudara, penekanan transkripsional BRCA1 dapat terjadi lebih sering oleh microRNA-182 yang diekspresikan secara berlebihan daripada oleh hipermetilasi promotor BRCA1.[25] Referensi [sunting sunting sumber] ^ Inggris Anthony JF Griffiths, Jeffrey H Miller, David T Suzuki, Richard C Lewontin, and William Chiliad Gelbart 2000. An Introduction to Genetic Analysis. Academy of British Columbia, University of California, Harvard University edisi ke-7. West. H. Freeman. hlm. Transcription and RNA polymerase. ISBN 0-7167-3520-2. Diakses tanggal 2010-08-17 . ^ Susilawati dan Bachtiar, N. 2018. Biologi Dasar Terintegrasi PDF. Pekanbaru Kreasi Edukasi. hlm. 153. ISBN 978-602-6879-99-8. ^ Inggris Anthony JF Griffiths, Jeffrey H Miller, David T Suzuki, Richard C Lewontin, and William M Gelbart 2000. An Introduction to Genetic Analysis. University of British Columbia, University of California, Harvard University edisi ke-7. W. H. Freeman. hlm. Transcription an overview of gene regulation in eukaryotes. ISBN 0-7167-3520-2. Diakses tanggal 2010-08-17 . ^ a b Inggris Anthony JF Griffiths, Jeffrey H Miller, David T Suzuki, Richard C Lewontin, and William M Gelbart 2000. An Introduction to Genetic Assay. University of British Columbia, Academy of California, Harvard University edisi ke-7. Due west. H. Freeman. hlm. Glossary – Promoter. ISBN 0-7167-3520-2. Diakses tanggal 2010-08-17 . ^ Inggris Anthony JF Griffiths, Jeffrey H Miller, David T Suzuki, Richard C Lewontin, and William M Gelbart 2000. An Introduction to Genetic Analysis. Academy of British Columbia, University of California, Harvard Academy edisi ke-7. Due west. H. Freeman. hlm. Figure 11-25. The promoter region in college eukaryotes. ISBN 0-7167-3520-two. Diakses tanggal 2010-08-17 . ^ Inggris Anthony JF Griffiths, Jeffrey H Miller, David T Suzuki, Richard C Lewontin, and William One thousand Gelbart 2000. An Introduction to Genetic Assay. Academy of British Columbia, Academy of California, Harvard University edisi ke-7. W. H. Freeman. hlm. Figure 11-29. Assembly of the RNA polymerase 2 initiation complex. ISBN 0-7167-3520-2. Diakses tanggal 2010-08-17 . ^ a b c Inggris Anthony JF Griffiths, Jeffrey H Miller, David T Suzuki, Richard C Lewontin, and William One thousand Gelbart 2000. An Introduction to Genetic Analysis. University of British Columbia, University of California, Harvard Academy edisi ke-7. W. H. Freeman. hlm. Figure 10-fifteen. Processing of principal transcript. ISBN 0-7167-3520-2. Diakses tanggal 2010-08-17 . ^ Inggris Anthony JF Griffiths, Jeffrey H Miller, David T Suzuki, Richard C Lewontin, and William M Gelbart 2000. An Introduction to Genetic Assay. University of British Columbia, University of California, Harvard University edisi ke-7. W. H. Freeman. hlm. Eukaryotic RNA. ISBN 0-7167-3520-two. Diakses tanggal 2010-08-17 . ^ Watson JD, Baker TA, Bell SP, Gann AA, Levine M, Losick RM 2013. Molecular Biology of the Gene edisi ke-7th. Pearson. ^ Henderson, Kate L.; Felth, Lindsey C.; Molzahn, Cristen M.; Shkel, Irina; Wang, Si; Chhabra, Munish; Ruff, Emily F.; Bieter, Lauren; Kraft, Joseph East. 2017-04-11. “Mechanism of transcription initiation and promoter escape by E . coli RNA polymerase”. Proceedings of the National University of Sciences dalam bahasa Inggris. 114 fifteen E3032–E3040. doi ISSN 0027-8424. PMC5393250 . PMID 28348246. ^ Reines, D.; Conaway, R. C.; Conaway, J. W. 1999-06. “Mechanism and regulation of transcriptional elongation by RNA polymerase Two”. Current Opinion in Jail cell Biology. 11 iii 342–346. doi ISSN 0955-0674. PMC3371606 . PMID 10395562. ^ Imashimizu, Masahiko; Shimamoto, Nobuo; Oshima, Taku; Kashlev, Mikhail 2014. “Transcription elongation. Heterogeneous tracking of RNA polymerase and its biological implications”. Transcription. 5 1 e28285. doi ISSN 2154-1272. PMC4214235 . PMID 25764114. ^ Banerjee, Sharmistha; Chalissery, Jisha; Bandey, Irfan; Sen, Ranjan 2006-02. “Rho-dependent transcription termination more questions than answers”. Periodical of Microbiology Seoul, Korea. 44 ane 11–22. ISSN 1225-8873. PMC1838574 . PMID 16554712. ^ Cummins, N. W.; Badley, A. D. 2010-11-11. “Mechanisms of HIV-associated lymphocyte apoptosis 2010”. Cell Death & Disease. 1 e99. doi ISSN 2041-4889. PMC3032328 . PMID 21368875. ^ Cesare, Anthony J.; Reddel, Roger R. 2010-05. “Culling lengthening of telomeres models, mechanisms and implications”. Nature Reviews. Genetics. 11 5 319–330. doi ISSN 1471-0064. PMID 20351727. ^ Campbell, Elizabeth A.; Korzheva, Nataliya; Mustaev, Arkady; Murakami, Katsuhiko; Nair, Satish; Goldfarb, Alex; Darst, Seth A. 2001-03. “Structural Mechanism for Rifampicin Inhibition of Bacterial RNA Polymerase”. Cell dalam bahasa Inggris. 104 6 901–912. doi ^ Pippi, Bruna; Reginatto, Paula; Machado, Gabriella da Rosa Monte; Bergamo, Vanessa Zafaneli; Lana, Daiane Flores Dalla; Teixeira, Mario Lettieri; Franco, Lucas Lopardi; Alves, Ricardo José; Andrade, Saulo Fernandes 2017-ten-01. “Evaluation of 8-Hydroxyquinoline Derivatives as Hits for Antifungal Drug Design”. Medical Mycology. 55 7 763–773. doi ISSN 1460-2709. PMID 28159993. ^ Datan, Emmanuel; Minn, Il; Xu, Peng; He, Qing-Li; Ahn, Hye-Hyun; Yu, Biao; Pomper, Martin One thousand.; Liu, Jun O. 2020-09-25. “A Glucose-Triptolide Cohabit Selectively Targets Cancer Cells nether Hypoxia”. iScience. 23 9 101536. doi ISSN 2589-0042. PMC7509213 . ^ Saxonov, Serge; Berg, Paul; Brutlag, Douglas L. 2006-01-31. “A genome-wide analysis of CpG dinucleotides in the human genome distinguishes 2 distinct classes of promoters”. Proceedings of the National University of Sciences of the United states. 103 v 1412–1417. doi ISSN 0027-8424. PMC1345710 . PMID 16432200. ^ Bird, Adrian 2002-01-01. “Deoxyribonucleic acid methylation patterns and epigenetic memory”. Genes & Development. 16 1 6–21. doi ISSN 0890-9369. PMID 11782440. ^ Vogelstein, Bert; Papadopoulos, Nickolas; Velculescu, Victor E.; Zhou, Shibin; Diaz, Luis A.; Kinzler, Kenneth W. 2013-03-29. “Cancer genome landscapes”. Science New York, 339 6127 1546–1558. doi ISSN 1095-9203. PMC3749880 . PMID 23539594. ^ Toyota, M.; Ahuja, N.; Ohe-Toyota, M.; Herman, J. G.; Baylin, S. B.; Issa, J. P. 1999-07-20. “CpG island methylator phenotype in colorectal cancer”. Proceedings of the National University of Sciences of the Usa of America. 96 xv 8681–8686. doi ISSN 0027-8424. PMC17576 . PMID 10411935. ^ Curtin, Karen; Slattery, Martha L.; Samowitz, Wade S. 2011-04-12. “CpG island methylation in colorectal cancer past, present and futurity”. Pathology Research International. 2011 902674. doi ISSN 2042-003X. PMC3090226 . PMID 21559209. ^ Tessitore, Alessandra; Cicciarelli, Germana; Del Vecchio, Filippo; Gaggiano, Agata; Verzella, Daniela; Fischietti, Mariafausta; Vecchiotti, Davide; Capece, Daria; Zazzeroni, Francesca 2014. “MicroRNAs in the Deoxyribonucleic acid Impairment/Repair Network and Cancer”. International Periodical of Genomics. 2014 820248. doi ISSN 2314-436X. PMC3926391 . PMID 24616890. ^ Stefansson, Olafur A.; Esteller, Manel 2013-ten. “Epigenetic Modifications in Breast Cancer and Their Role in Personalized Medicine”. The American Journal of Pathology dalam bahasa Inggris. 183 iv 1052–1063. doi Lihat pula [sunting sunting sumber] Replikasi DNA Translasi bahan genetik Pranala luar [sunting sunting sumber] Animasi tentang transkripsi di youtube.
Reaksipolimerisasi atau pemanjangan RNA sama ama replikasi DNA yaitu dengan arah 5′ -> 3′ Untai DNA yang berperan sebagai cetakan hanya salah satu untai; Hasil transkripsi berupa RNA untai tunggal; pada operon lac punya 3 gen struktural yaitu lac Z, lac Y dan lac A. Masing2 dr gen itu punya start codon dan stop codon sendiri2 namun
Pengertian Sintesis Protein Protein adalah suatu polipeptida yang terdiri dari rantai panjang asam amino yang merupakan hasil dari sintesis kode berupa informasi genetik dari DNA. Protein di dalam tubuh terbentuk melalui mekanisme yang disebut dengan sintesis protein. Sintesis protein adalah proses pembentukkan protein yang melibatkan DNA sebagai sumber materi genetik pengkode berbagai asam amino yang akan diolah menjadi rantai polipeptida. DNA merupakan sumber materi genetik yang terdapat di dalam nukleus, namun untuk melakukan proses sintesis proteinnya dilakukan di ribosom, untuk itu diperlukan perantara, yaitu RNA agar sintesis protein dapat berlangsung. Sintesis protein dikenal dengan istilah Dogma Sentral, yaitu rangkaian proses molekul DNA menjadi RNA, kemudian RNA menjadi protein. Sebelum masuk kedalam tahapan sintesis protein, akan dibahas terlebih dahulu mengenai struktur DNA dan RNA yang merupakan sumber materi genetik yang berperan dalam mengkode informasi untuk melakukan sintesis protein. Perbedaan Struktur DNA dengan RNA Struktur DNA Struktur RNA Kumpulan molekul nukelotida yang mengandung informasi genetik Berperan dalam penyimpan dan penyalur informasi genetik Terusun dari gula deoksiribosa, gugus fosfat dan basa nitrogen Tersusun dari gula ribosa, gugus fosfat dan basa nitrogen Terdiri dari dua untaian rantai nukleotida Hanya memiliki satu untaian rantai nukleotida Memiliki basa purin, yaitu Adenin A dan Guanin G serta basa pirimidin, yaitu Sitosin C dan Timin T RNA memiliki basa purin, yaitu Adenin A dan Guanin G serta basa pirimidin, yaitu Sitosin C, dan Urasil U Replikasi DNA Replikasi DNA adalah proses penggandaan DNA baru dari untaian DNA yang telah ada sebelumnya. Kode genetik kodon pada DNA yang dibawa dan dicetak akan membentuk RNA sebagai sumber informasi genetik untuk memulai sintesis protein. Proses atau tahapan replikasi DNA, yaitu Ikatan hidrogen DNA kromosomal diputus oleh enzim helikase dari arah 3’ ke 5’. DNA polymerase kemudian mulai membentuk salinan DNA baru dari titik P promotor ke T terminator. Leading strands adalah rantai berarah 3’ ke 5’ dimana replikasi DNA terus berjalan atau tidak terputus. Sedangkan, Lagging strands adalah rantai berarah 5’ ke 3’ dimana replikasi DNA terputus. Rantai yang mengalami lagging strands menghasilkan fragmen yang terputus-putus. Fragmen ini disebut dengan fragmen okazaki. Fragmen okazaki kemudian diperbaiki oleh enzim ligase untuk membentuk DNA baru. Maka terbentuklah DNA baru hasil replikasi dari DNA kromosomal Replikasi DNASumber Gambar Campbell, Neil A, & Reece, Jane B. 2008 Tahapan Sintesis Protein Proses sintesis protein dimulai ketika ikatan hidrogen DNA hasil replikasi dipecah atau diputus oleh enzim RNA polymerase. Kemudian rantai DNA tersebut dikode oleh mRNA. Sintesis protein terjadi melalui dua tahap, yaitu transkripsi yang dilanjutkan dengan translasi. Tahapan Sintesis ProteinSumber Gambar Campbell, N. 2005 A. Transkripsi Transkripsi adalah proses penyalinan informasi DNA kepada mRNA. Proses ini terjadi di dalam nukleus dan dikatalisasi oleh enzim RNA polymerase. Transkripsi hanya terjadi pada satu untai rantai DNA yang mengandung kelompok gen tertentu saja. Terdapat beberapa tahapan pada proses transkripsi, yaitu Tahapan TranskripsiSumber Gambar Purnomo, Sudjno, Trijoko, & S Hadisusanti. 2009 Inisiasi Permulaan Transkripsi Tahapan inisiasi, yaitu sebagai berikut RNA polymerase melekat pada daerah promoter atau pangkal transkripsi untuk memulai transkripsi. RNA polymerase kemudian berikatan dengan kumpulan protein sehingga membentuk kompleks inisiasi transkripsi. RNA polymerase membuka untaian rantai ganda DNA. Elongasi Pemanjangan Transkripsi Tahapan elongasi, yaitu sebagai berikut Setelah rantai ganda DNA terbuka, RNA polymerase kemudian meyusun untaian nukleotida-nukleotida RNA dari arah 5’ ke 3’ sesuai dengan pasangan basa nitrogennya sehingga terjadi pemanjangan RNA. RNA akan membentuk pasangan basa Adenin A dengan Urasil U. Terminasi Pengakhiran Transkripsi Tahapan terminasi, yaitu sebagai berikut Terminasi terjadi pada daerah terminator. Daerah ini memiliki urutan DNA yang berfungsi untuk menghentikan proses transkripsi. Rantai DNA menyatu kembali kemudian RNA polymerase dan mRNA yang telah terbentuk akan terlepas dari DNA. mRNA Messenger RNA, merupakan RNA yang mengandung kode genetik kodon hasil transkripsi basa nitrogen pada DNA yang menjadi cetakan untuk menjadi urutan asam amino polipeptida yang mengkode suatu protein tertentu. Kemudian mRNA akan keluar dari inti sel melalui pori-pori nukleus dan masuk ke dalam sitosol. B. Translasi Translasi adalah sintesis polipeptida dari mRNA untuk menentukan urutan-urutan asam amino yang akan membentuk suatu protein. Translasi terjadi di ribosom. Pada tahap ini, sel harus menerjemahkan kode gentik atau kodon. Kodon adalah tiga nukleotida pada urutan mRNA yang dapat diterjemahkan menjadi urutan asam amino. Urutan asam amino akan mengkode suatu protein spesifik. Terdapat beberapa tahapan pada proses translasi, yaitu Inisiasi Permulaan Translasi Ujung mRNA yang telah keluar dari nukleus akan berikatan dengan ribosom unit kecil melalui bantuan GTP dan enzim. Peristiwa tersebut disebut dengan kodon inisiasi Kodon inisiasi tersebut adalah AUG. Kodon AUG memberikan sinyal untuk memulai proses translasi. Kemudian, tRNA transfer RNA antikodon UAC yang membawa asam amino metionin melekat pada kodon inisiasi AUG. tRNA antikodon UAC merupakan komplementer dari kodon AUG. tRNA sendiri berfungsi untuk mengantarkan informasi genetik mRNA dari sitoplasma menuju ribosom untuk disusun menjadi protein. Inisiasi TranslasiSumber Gambar Campbell, N. 2005 Elongasi Pemanjangan Translasi Kodon yang dibawa oleh mRNA akan diterjemahkan satu persatu menjadi asam amino. asam amino berikutnya akan ditambahkan satu persatu-satu dari asam amino pertama metionin. Asam amino pertama metionin segera lepas dari ribosom, tRNA kembali ke sitoplasma untuk mengulangi fungsinya. tRNA berikutnya datang untuk berpasangan dengan kodon mRNA berikutnya. Setelah itu masing-masing asam amino akan digabungkan oleh tRNA. Gabungan asam amino tersebut akan membentuk rantai polipeptida yang dikatalisasi oleh rRNA. rRNA ribosomal RNA terdapat pada ribosom sub unit besar yang berfungsi sebagai enzim pembentuk ikatan peptida yang menyambungkan polipeptida-polipeptida antar asam amino. Elongasi TranslasiSumber Gambar Campbell, Neil A, & Reece, Jane B. 2008 Terminasi Pengakhiran Translasi Proses translasi berakhir ketika salah satu kodon stop mRNA UAA, UAG, dan UGA melekat pada ribosom. Polipeptida atau protein yang terbentuk akan terlepas dari ribosom dan terjadi pelepasan sub unit ribosom menjadi sub unit besar dan kecil. Protein yang telah disintesis mengalami proses post-translasi. Pada tahap ini, protein dapat berikatan dengan karbohidrat atau dipecah kembali menjadi beberapa polipeptida. Terminasi TranslasiSumber Gambar Campbell, Neil A, & Reece, Jane B. 2008 Daftar Pustaka Campbell, N. 2005. Biology. Ninth Edition. California The Benjamin/Cimmings Publishing Company, Inc. Campbell, Neil A, & Reece, Jane B. 2008. Biologi Jilid 1 Ed. 8. Jakarta Erlangga. Mader, 1998. Biology. 6th Edition. New York The McGraw-Hill Companies. Raven & Johnson. 1996. Biology. Fourth Edition. New York WBC/McGraw-Hill Companies, Inc. Purnomo, Sudjno, Trijoko, & S Hadisusanti. 2009. Biologi Kelas XI untuk SMA dan MA. Jakarta Pusat Perbukuan, Departemen Pendidikan Nasional Kontributor Dinda Muthi Selina, Alumni Biologi FMIPA UI
Salahsatu hasil transkripsi dna adalah rna struktural yaitu, a mrnab trnac rrnad mirnae irna. 1.
Apa Itu Materi Genetik?Pengertian RNAStruktur RNATipe-Tipe RNAProses Terbentuknya RNAArtikel Terkait Apa itu Pengertian RNA? Seperti yang kita ketahui, masing-masing makhluk hidup di dunia ini tidak ada yang identik. Mengapa hal tersebut bisa terjadi? Jawabannya adalah karena tiap-tiap makhluk hidup memiliki materi genetik yang berbeda-beda. Pengertian RNA Adalah Struktur, Proses dan Tipe-tipe RNA Materi genetik ini tersusun pada setiap sel tubuh, yang mana setiap sel tersebut mengandung kromosom yang terdiri dari uraian gen. Baca Juga Pengertian Kromosom Sederhananya, materi genetik adalah informasi dari tiap-tiap sel makhluk hidup yang akan diturunkan pada keturunan selanjutnya. Apa Itu Materi Genetik? Seperti yang telah dijelaskan sebelumnya, materi genetik terdiri dari uraian gen. Gen adalah unit pewarisan sifat bagi sebuah organisme atau makhluk hidup. Fungsi dari gen adalah sebagai informasi genetik yang akan diturunkan pada keturunannya dan juga untuk pengatur metabolisme perkembangan makhluk hidup. Di dalam sebuah gen, terdapat materi genetik berupa DNA deoxyribonucleic acid dan RNA ribonucleic acid. Nantinya, DNA dan RNA akan diturunkan pada keturunan selanjutnya melalui proses reproduksi. Berikut adalah penjelasan yang lebih rinci dan mendetail mengenai Pengertian dan Proses RNA. Apa itu RNA? Pengertian RNA ribonucleic acid adalah hasil transkripsi dari sebuah fragmen DNA. Dengan demikian, RNA merupakan polimer yang lebih pendek dibandingkan dengan DNA. Fungsi utama dari RNA adalah sebagai penyimpan dan penyalur informasi genetik. Selain itu, RNA juga berfungsi sebagai enzim ribosom yang mengkalis formasi RNA-nya sendiri. Struktur RNA Tentunya, molekul RNA memiliki bentuk yang berbeda dengan molekul DNA. RNA memiliki bentuk pita tunggal dan tidak berpilin. RNA merupakan suatu polinukleotida yang terdiri dari banyak ribonukleotida. Tiap-tiap ribonukleotida tersusun oleh Gula Pentosa Ribosa, Fosfat, dan Basa Nitrogen. Basa Nitrogen RNA terbagi menjadi dua jenis, yaitu basa purin dan basa primidin. Basa Purin sama dengan DNA, yaitu terdiri dari adenine A dan guanine G. Lalu, Basa Primidin terdiri dari sitosin C dan urasil U. Purin dan Primidin yang berkaitan dengan Ribosa membentuk sebuah molekul yang dinamakan nukleotida atau ribonukleotida. Sementara itu, tulang punggung RNA tersusun dari deretan Ribosa dan Fosfat. Tipe-Tipe RNA RNA sendiri terdiri dari tiga tipe. Di antaranya adalah RNA duta RNAd, RNA transfer RNAt, dan RNA ribosomal RNAr. Masing-masing tipe tersebut memiliki ciri khas dan fungsinya sendiri. Berikut ini adalah penjelasan lebih lanjut mengenai Tipe-Tipe RNA RNAd RNA duta Ketahuilah bahwa RNAd berupa rantai tunggal yang relatif panjang memiliki urutan basa yang komplementer dengan salah satu basa rantai DNA. RNAd membawa kode atau pesan genetik kodon dari kromosom terletak di dalam inti sel menuju ke ribosom terletak di sitoplasma. Selanjutnya, kode genetic RNAd menjadi sebuah cetakan untuk menentukan urutan asam amino pada rantai polipeptida. RNAt RNA transfer RNAt merupakan RNA yang membawa asam amino satu per satu menuju ke ribosom. Di salah satu ujung RNAt, terdapat tiga rangkaian anti kodon pendek. Asam amino akan melekat pada ujung RNAt yang bersebrangan dengan ujung anti kodon tersebut. Cara berfungsi RNAt adalah membawa asam amino spesifik yang berguna dalam sintesis protein, yaitu pengurutan asam amino yang sesuai dengan urutan kodonnya pada RNAd. Baca Juga Pengertian Sintesis Protein RNAr RNA ribosomal RNAr memiliki rantai tunggal yang tidak bercabang dan fleksibel. Jumlahnya lebih banyak dibandingkan dengan RNAd dan RNAt. RNAr merupakan komponen struktural utama yang ada di dalam ribosom. Masing-masing sub unit ribosom terdiri dari 30 – 46 % molekul RNAr, dan terdiri dari 70 – 80 % protein. Proses Terbentuknya RNA Seperti yang sudah dijelaskan sebelumnya, RNA yang berasal dari transkripsi DNA Baca Pengertian Transkripsi DNA belum dapat berfungsi seperti semestinya. Setiap RNA yang dihasilkan tentu akan melalui beberapa tahap atau proses. Proses tersebut antara lain adalah capping, polideanilasi, dan splicing. Berikut adalah penjelasan lengkapnya Capping Capping adalah tahap penambahan kelompok guanine pada ujung 5’. Proses ini terjadi ketika telah mencapai panjang 30 nukleotida. Baca Juga Pengertian Guanin Fungsi dari capping adalah melindungi pre-mRNA dari degradasi eksonuklease. Proses capping ini terjadi ketika transkripsi belum selesai. Baca Juga Pengertian mRNA Adalah Polideanilasi Polideanilasi atau polideanilation, adalah peristiwa penambahan residu adesonin atau poly A ke ujung 3’ dari hnRNA. Ujung dari poly A berfungsi untuk melindungi pre-mRNA dari degradasi ribonukleotida dan berfungsi untuk mentransfer mRNA dari inti menuju ke sitoplasma. Enzim poly A lalu menambahkan adenine ribonukleotida sekitar 200 pasang basa pada ujung rantai 3’ dari RNA. Splicing Splicing atau penyambungan,yaitu proses mekanisme ketika intron menghilang dan bagian ekson tetap. Intron adalah urutan campuran nukleotida yang tidak mengekspresikan protein, sementara itu ekson adalah bagian yang menahan molekul RNA dewasa dan dapat mengekspresikan protein. Mekanisme dari proses splicing ini adalah pada awalnya terdapat intranuklear protein atau komplek RNA yang memastikan ketepatan splicing. Pada tahap pertama, terjadi pemutusan sambungan di ujung 5’ yang dapat memisahkan hasil transkripsi ekson 1 dari bagian molekul RNA lain. Selanjutnya, ujung 5’ yang bebas dari proses transkripsi intron melengkung dan berhubungan dengan nukleotida berbasa A yang terletak di hulu ujung sambungan 3’. Demikianlah penjelasan dan ulasan mengenai pengertian dan proses terbentuknya RNA. Semoga artikel ini bermanfaat bagi Anda.
Prosessintesis protein terdapat 2 tahap, adalah: Download Gambar. Source: kumparan.com. Urutan dasar dna dalam proses transkripsi. Rna ialah hasil dari transkripsi dari suatu fragmen dna, sehingga rna sebagai polimer yang jauh lebih pendek apabila dibandingkan dengan dna. 1.) inisisasi di tahapn ini enzim rna polymerase menyalin gen yang
- RNA adalah singkatan ribonukleat acid yang merupakan salah satu materi genetik yang terdiri dari nukleotida. Dalam tubuh manusia RNA berperan sebagai pembawa informasi genetik dan menerjemahkannya dalam sintesis berbgai macam protein. NURUL UTAMI Struktur RNA Struktur RNA NA terdiri atas basa-basa nitrogen yang terikat pada tulang pulnggung gula-fosfat membentuk satu rantai tunggal yang berpilin atau single yang berfungsi sebagai tulang pulnggung adalah ribosa yang terdiri dari lima karbon, satu okssigen, dan satu gugus hidroksil –OH. Baca juga Replikasi DNA Teori-Teori Cara Duplikasi DNA Gugus hidroksil pada RNA membuatnya tidak stabil dan rentan terhadap basa sehingga RNA tidak dapat bertahan lama. Saat dibutuhkan RNA secara spontan akan disintesis dari DNA, digunakan, didegradi, dan di daur ulang kembali. Basa nitrogen yang terikat pada gula-fosfat RNA adalah adenine, guanine, sitosin, dan urasil. Pinguino Kolb Sebuah karya seni yang menggambarkan heliks dari DNA. Macam-Macam RNA Seperti DNA, RNA juga terbagi menjadi beberapa macam, yaitu RNA transfer atau tRNA, RNA ribosom rRNA, dan pembawa pesan atau mRNA. Baca juga Bantu Pemerintah Tangani Covid-19, Prodia Siap Lakukan Pemeriksaan SARS-CoV-2 RNA rRNA RNA ribosom atau rRNA memiliki struktur yang panjang dan stabil. Dilansir dari Encyclopaedia Britannica, rRNA disebut RNA ribosom karena merupakan penyusun ribosom bersama dengan protein dalam sitoplasma membentuk ribosom, rRNA juga berfungsi sebagai pengatur dalam sintesis protein. Sebagian kecil rRNA berfungsi untuk menerjemahkan informasi yang dibawa oleh mRNA dan sebagian besar lainnya berfungsi untuk bergabung dengan asam amino untuk membentuk berbagai macam protein non esensial. Sagar Aryal Sebuah perbandingan antara DNA dan RNA. mRNA RNA pembawa pesan atau mRNA memiliki struktur yang pendek dan tidak stabil sesuai dengan kode genetik DNA yang dibawanya. Dilansir dari Microbe Notes, kode genetik disimpan mRNA dalam bentuk triplet nukleotida atau kodon. Baca juga [HOAKS] Vaksin Covid-19 Dapat Mengubah DNA Manusia Kode genetik ini kemudian digunakan untuk mengarahkan sintesis protein. Ketersedian mRNA dalam sel hanya 5% dari total keseluruhan RNA yang ada. tRNA RNA Transfer atau tRNA memiliki struktur yang paling kecil jika dibandingkan mRNA dan rRNA. Dilansir dari Microbe Notes, tRNA terdiri atas 75-95 nukleotida yang stabil karena diikat oleh ikatan hidrogen. tRNA berfungsi untuk membaca asam amino yang dibutuhkan dengan cara melekatkan diri pada mRNA, lalu mengantarnya kedalam ribosom. NURUL UTAMI Struktur tRNA Dari gambar terlihat struktur tRNA pada bagian yang melekat ke mRNA, ketiga basa C, U, dan C tersebut adalah anti kodon yang melekat pada kodon mRNA. Basa G guanin akan selalu melekat pada basa C sitosin, dan basa U urasil akan selalu melekat pada basa A adenin. Baca juga KBRI Singapura Terima Bantuan Hand Sanitizer dan RNA Test Kit dari Temasek Pelekatan kodon mRNA dan anticodon tRNA adalah proses pembacaan kode genetik asam amino yang dibutuhkan. tRNA akan mengambil asam amino dan pada bagian ujung 3’ adalah tempat melekatnya asam amino saat ditransfer ke ribosom. Dapatkan update berita pilihan dan breaking news setiap hari dari Mari bergabung di Grup Telegram " News Update", caranya klik link kemudian join. Anda harus install aplikasi Telegram terlebih dulu di ponsel.
. 128 143 227 149 371 44 260 152
hasil transkripsi dna adalah rna struktural yaitu